Author Archives: Anna Jobin

About Anna Jobin

I like considering the bigger picture while keeping in mind that details matter.

Anna in action 2019: vom Swiss Economic Forum zur Business Innovation Week

Nachderm ich im Herbst 2018 aus den Vereinigten Staaten zurück in die Schweiz gezogen bin, dachte ich, ich würde mich nun wieder langsam an mein neues altes Zuhause gewöhnen und alles ein bisschen ruhiger angehen. So im Sinne von Work-Life-Balance und so. Wenn ich nun aber auf dieses Jahr zurückschaue merke ich, dass viel mehr los war als ich eigentlich vorhatte — und dass mir dabei pudelwohl war. “Ruhig angehen” scheint nicht unbedingt mein Ding zu sein…

Zusätzlich zu meiner Forschung und anderen arbeitsrelevanten Verpflichtungen habe ich nämlich begonnen, mich aktiver (und auch ohne direktes Forschungsimperatif) für Schweizer Wirschafts- und Innovationinitiativen zu interessieren. Denn homogene Umfelder sind selten förderlich, und Brücken bauen ist enorm wichtig. Daher nun diese persönliche, in einem Bereich fokussierte Zusammenfassung von 2019:

Swiss Economic Forum & Swiss Innovation Forum

Dank persönlicher Empfehlungen (merci!) und meiner Affinität für die sozialen Aspekte algorithmischer Systeme hatte ich die Gelegenheit, an beiden Foren in privilegierter Rolle teilzunehmen. Da es sich beide Male um sogenannte “closed door” Events handelte kann ich hier leider nicht viel mehr mitteilen.

Aber einen öffentlichen Tweet einbinden darf ich schon, oder? 😉

Sowohl inhaltlich wie auch hinsichtlich der Teilnehmenden waren dies zwei überaus spannende Anlässe.

Shift 2019

Foto: Louis Rafael Rosenthal

An der Shift dreht sich alles um digital Ethik im Privatsektor. 2019 war die erste Ausgabe dieser Konferenz (und die Daten für 2020 stehen bereits fest). Auch wenn ich im Februar nicht in Topform war konnte ich persönlich doch viel von dieser einzigartigen Konferenz im deutschsprachigen Raum mitnehmen

Online Marketing Konferenz

An der Online Marketing Konferenz durfte ich über Datenethik sprechen und darüber, welche Ansätze heute wirklich innovativ wären… A propos Datenethik: welche Metapher ist wohl im obigen Bild illustriert? (Und a propos Metaphern: Mein Beitrag war stark inspiriert von der tollen Analyse von Metaphern der beiden sozialwissenschaftlichen Internetresearcher Luke Stark und Anna Lauren Hoffmann, deren wissenschaftliche Publikation hier und ein vielleicht etwas zugänglicherer Artikel hier gelesen werden können.)

Connecta

Auch an der Connecta liess man mich über Datenethik und Innovation sprechen. Was mich besonders freute: mein Vortrag fand im Claude-Nicollier-Raum statt.

Auf dem Foto sieht man Claude Nicollier leider nicht, da er zwar auch auf der Mauer aber weiter rechts von mir abgebildet ist.

Business Innovation Week

An der Business Innovation Week sass ich zusammen mit zwei Grünliberalen und einem Microsoftangestellten in einem Panel mit einem eher merk-würdigen Namen und brachte alle drei zum Lachen.

Photo: Andreas Kriesi (via FB)

Was ich sagte, und warum ich meine Hand ausstreckte, weiss ich nicht mehr. Aber ich erinnere mich, dass vor dem Panel Andy Fitze einen tollen Vortrag über die Komplementarität von AI und Menschen hielt. (Andy, das Bild der “smartest” Kreuzung als Steigerung einer “smarten” Kreuzung hab ich immer noch im Kopf!)

Mal schauen, was 2020 in diesem Bereich so bringen wird… Bring it on!

Inclusive AI: empirical data from the civil society

I am thrilled about this most recent collaboration: together with Swissnex San Francisco, the think thank foraus and AI commons I have worked on a report that presents empirical data on what the ethical principle of inclusiveness means when it comes to artificial intelligence. Its title is: “Towards an Inclusive Future in AI – A Global Participatory Process“and it can be accessed for free on the foraus website.

Based on the policy kitchen method (explained in more details in the report) people from four continent have gathered in “11 workshops in 8 countries, involving 10 partner organizations and about 120 participants from a wide range of perspectives, collaboratively generated 43 ideas for an insclusive future in AI.”

The key take-aways of how inclusivity is understood, and can be achieved, are the following:

  1. Aim at inclusive inclusion
  2. Prevent, detect and eliminate bias in AI systems
  3. Establish open standards & access to data
  4. Alleviate power differentials between corporations and individuals
  5. Guarantee shared benefits and prosperity
  6. Provide access to education
  7. Commit to participatory governance

What is most remarkable about this report is the fact that it draws on empirical data from civil society. It therefore applies its own value of inclusivity to the very process by which the conclusions are achieved: by including and listening to stakeholders when it comes to defining what is at stake.

The report is in English — for a short German summary click here.

By the way, our report has been publishes simultaneously with another great paper on “Making Sense of Artificial Intelligence – Why Switzerland Should Support a Scientific UN Panel to Assess the Rise of AI” which I encourage you to read here.

Towards an inclusive future in AI: was bedeutet “inklusive Künstliche Intelligenz”?

Dank Swissnex San Francisco, dem Think Tank foraus und AI Commons durfte ich bei der Ausarbeitung des Reports “Towards an inclusive future in AI” mitarbeiten. Am 22. Oktober 2019 fand in Bern eine Pressekonferenz stattfand, wo sowohl unser wie auch ein zweiter foraus Report zum Thema AI, resp. zur Schnittstelle von AI Governance und der Schweiz (“Making Sense of Artificial Intelligence – Why Switzerland Should Support a Scientific UN Panel to Assess the Rise of AI“), vorgestellt wurde.

Untenstehend das Transkript meiner deutschen Vorstellung unseres Reports “Towards an Inclusive Future in AI: A Global Participatory Process“.


Künstliche Intelligenz geht uns alle etwas an.

Inklusion, Partizipation, Integration — all das sind wichtige Punkte für eine Technologie, die im Leben von allen Menschen eine immer wichtigere Rolle spielt. Das Prinzip der Inklusion ist tatsächlich sehr wichtig: Es taucht auch in ethischen Richtlinien für künstliche Intelligenz auf der ganzen Welt immer wieder auf. Auf Seite 6 und 7 des Reports sehen Sie einige Beispiele wo und wie “Inklusion” in bestehenden Berichten auftaucht.

Was genau jedoch Inklusion bedeutet, und wie sie erreicht werden kann, sprich: wie Partizipation umgesetzt werden kann, ist eine offene, nicht ganz einfache Frage. Anstelle einer theoretischen Abhandlung haben wir mit Hilfe der Policy Kitchen in einem bottom-up Prozess verschiedene Menschen aus der Zivilgesellschaft auf der ganzen Welt gefragt: “was bedeutet inklusive KI — inklusive künstliche Intelligenz — für euch, und wie kann sie erreicht werden?”

Das Ergebnis zeigt, dass Inklusion nicht mit einem einzigen magischen Rezept erreicht werden kann. Auch unsere Teilnehmenden verbinden mit Inklusion verschiedene, sich gegenseitig ergänzende Ansätze, die jeweils auf verschiedenen Niveaus wirken.

Ich werde die einzelnen Ansätze nun mit ein wenig mehr Details beschreiben. Im Report finden Sie die Zusammenfassung auf Seite 9 als Aufzählung, sowie ab Seite 22 als Schlussfolgerung (“Dessert”). Dabei möchte ich noch einmal betonen, wie wichtig aus gesellschaftpolitischer Perpektive der Prozess war, der zu diesen Ergebnissen geführt hat: Die Ansätze basieren auf Daten. Sie widerspiegeln die Auffassung von verschiedenen Menschen der Zivilgesellschaft in mehreren Ländern wieder.

Zum einen verbinden die Menschen mit Inklusion die Elimination von Bias. Bias — oder Verzerrung, Vorurteil oder Ungleichgewichtigkeit — innerhalb von Systemen mit künstlicher Intelligenz kommt zum Beispiel durch verzerrte Datenbestände zu Stande. Bestehende soziale Vorurteile werden in Daten widergespiegelt und danach durch Maschinen verstärkt.

Gemäss unseren Teilnehmenden muss inklusive KI Vorurteilen aktiv entgegenwirken. Zur Vorbeugung, aber auch Behebung wurden einerseits technische Massnahmen vorgeschlagen, aber auch zum Beispiel Qualitätskontrollen diesbezüglich. Diese sollen zu verschiedenen Zeitpunkten während der Entstehung, aber auch der Nutzung eines KI-Systems, systematisiert werden.

Auch erwähnt wurden organisatorische Neustrukturierung, zum Beispiel “inklusive Teams”, d.h. weniger sozial homogene Teams. Oder institutionalisierte Möglichkeiten für Nutzerinnen und Nutzer um Feedback über Bias geben zu können.

Weitere Vorschläge drehen sich um einen 2. Punkt: Datenzugang und offene Standards — Open Access und Open Standards. Inklusion wird verstanden als die Möglichkeit, Partizipation technisch zu ermöglichen. Denn wenn KI-Technologien in den Händen von Wenigen konzentriert sind, wird der Graben im Laufe der Zeit immer grösser: Je weiter fortgeschritten eine Organisation mit künstlicher Intelligenz bereits ist, umso grösser wird ihr Vorsprung.

Zugang zu Daten, offene Standards damit Daten — aber auch Systeme — genutzt, ja: weiterbenutzt werden können, verringern dieses Machtgefälle und führen zu vermehrter Partizipation bei der Herstellung.

A propos Machtgefälle, das bringt mich auch gleich zum dritten Punkt. Ab Seite 14 sehen Sie den wichtigen Punkt der Verringerung des Machtgefälles zwischen Unternehmen und Einzelpersonen. “User Rights and Transparency.”

Inklusion wird von vielen Menschen verstanden als aktives Arbeiten an der Verringerung dieses Machtgefälles. Die Vorschläge aus der Policy Kitchen in diesem Bereich betreffen vor allem Datensouveränität, Transparenz und Wahlmöglichkeit. Gerade der Wunsch nach Wahlmöglichkeit verbindet die Vorstellung von Inklusion mit einer weniger homogenen technischen Landschaft, wo Technologiehersteller nicht mehr unilateral die Funktionsweisen und Konditionen Ihre Systeme diktieren können.

Continue reading

Artificial Intelligence: how many AI principles or ethics guidelines are there and what do they say?

This is it: the study I had been working on all winter (together with my colleague Marcello and our professor Effy Vayena) was published in Nature Machine Intelligence. It is an in-depth review of a corpus of 84 documents consisting of (or containing) ethical principles for artificial intelligence. Although no single principles occurred in all documents, some are more prevalent than others — and others are strikingly underrepresented.

Here is a link to the article “The global landscape of AI ethics guidelines”: https://www.nature.com/articles/s42256-019-0088-2. Unfortunately it is behind a paywall (and we were not able to select the option of having the article published Open Access), but if you get in touch via e-mail (anna.jobin@hest.eth.ch), on Social Media, or via ResearchGate, I will be more than happy to send you the article. (*)

This is what the abstract says:

In the past five years, private companies, research institutions and public sector organizations have issued principles and guidelines for ethical artificial intelligence (AI). However, despite an apparent agreement that AI should be ‘ethical’, there is debate about both what constitutes ‘ethical AI’ and which ethical requirements, technical standards and best practices are needed for its realization. To investigate whether a global agreement on these questions is emerging, we mapped and analysed the current corpus of principles and guidelines on ethical AI. Our results reveal a global convergence emerging around five ethical principles (transparency, justice and fairness, non-maleficence, responsibility and privacy), with substantive divergence in relation to how these principles are interpreted, why they are deemed important, what issue, domain or actors they pertain to, and how they should be implemented. Our findings highlight the importance of integrating guideline-development efforts with substantive ethical analysis and adequate implementation strategies.

On twitter I have given a little more information about our findings in a short thread:

There are more tweets, and if you click on the date link you should be able to acces the whole thread.

Although we analyzed 84 documents, many more AI principles and ethics guidelines exist today. For one, there is the time difference between the time one submits the first version of an article to a journal and the moment it is published (peer-review and production take time, and I would like to add that NMI has been much faster than I, a qualitative social scientist, have been used to from other experiences). But there is also another catch-22, due to our research design: our in-depth analysis takes time, and while we were analyzing new guidelines, even more principles would be issued during that time. At one point we simply had to wrap up… This will also explain why our analysis only takes into account the version of the documents our methodology provided us with, and does not account for subsequent versions (the Montreal Declaration, for example, was in stakeholder consultation stage so our analysis is not about its final version).

Therefore, and for methodological reasons, we are only able to provide a snapshot in time. Yet we hope that our research can serve as an overview and a stepping stone for anyone involved with “ethical AI”, from researchers and scholars to technology developers to policy makers.

(*) FWIW we did post a pre-print version on arXiv.org, though I am compelled to highlight that the arXiv version is not identical with the NMI journal version: it is our author version, before peer-review, and in addition to the clarifying modifications we were able to make in the final version thanks to the reviewer comments, one document was initially wrongly attributed to the UK instead of the USA (something we were able to correct thanks to a generous reader comment).